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In this document, the metrology system is studied. First, in Section 1 the goal of the metrology system
is stated and the proposed concept is described. In order to increase the accuracy of the metrology
system, two problems are to be dealt with:

e The deformation of the metrology frame under the action of gravity (Section 4)

e The periodic non-linearity of the interferometers (Section 5)



1 Metrology Concept

The goal of the metrology system is to measure the distance and default of parallelism between the first
and second crystals.

Only 3 degrees of freedom are of interest:

1.1 Sensor Topology

In order to measure the relative pose of the two crystals, instead of performing a direct measurement
which is complicated, the pose of the two crystals are measured from a metrology frame. Three inter-
ferometers are used to measured the 3dof of interest for each crystals. Three additional interferometers
are used to measured the relative motion of the metrology frame.

In total, there are 15 interferometers represented in Figure 1.1. The measurements are summarized in
Table 1.2.

Table 1.1: Notations for the metrology frame

Notation Meaning

d “Downstream”  Positive
X

“Upstream”™ Negative X
“Hall”: Positive Y
“Ring”: Negative Y
“Frame”

“First Crystals”

“Second Crystals”

N — —h 9 IS C

1.2 Computation of the relative pose between first and second
crystals

To understand how the relative pose between the crystals is computed from the interferometer signals,
have a look at this repository (https://gitlab.esrf.fr/dehaeze/dcm-kinematics).


https://gitlab.esrf.fr/dehaeze/dcm-kinematics

Table 1.2: List of Interferometer measurements

Number Measurement Description

1 Z1ru First “Ring” Crystal, “upstream”

2 Zire First “Ring” Crystal, “center”

3 Z1r,d First “Ring” Crystal, “downstream”
4 Z1hu First “Hall” Crystal, “upstream”

5 Z1h,c First “Hall” Crystal, “center”

6 Z1h.d First “Hall” Crystal, “downstream”

7 Z2h,u Second “Hall” Crystal, “upstream”

8 29h,c Second “Hall” Crystal, “center”

9 Zoh,d Second “Hall” Crystal, “downstream”
10 Z9ru Second “Ring” Crystal, “upstream”
11 29r.c Second “Ring” Crystal, “center”

12 Zor.d Second “Ring” Crystal, “downstream”
13 Zmfu Metrology Frame, “upstream”

14 Zmf,dr Metrology Frame, “downstream-ring”
15 Zmf,dh Metrology Frame, “downstream-hall”
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Figure 1.1: Schematic of the Metrology System



Basically, Jacobian matrices are derived from the geometry and are used to convert the 15 interferometer
signals to the relative pose of the primary and secondary crystals [d}, -, T'h,y, Thz) OF [dr 2, Try, Tral.

The sign conventions for the relative crystal pose are:
e An increase of dj, , means the two crystals are further apart

e An increase of 7, means that the second crystals experiences a rotation around y with
respect to the primary crystal

e An increase of rj , means that the second crystals experiences a rotation around x with
respect to the primary crystal

The relative pose can be expressed as a function of the interferometers using the Jacobian matrices for
the “hall” crystals:

dh,z L 22h,u L Z1h,u X Zmf,u
Thy | = Jon,s | 22he | = Jans | Zlhe | = Jipg s | Zmf.dh (1.1)
Th,x 22h,d Z1h,d Zmf,dr

As well as for the “ring” crystals:

dr,z L 22r,u L Z1ru L Zmfu
Try | = J2'r',s R2rc | — Jlr,s g || = Jmf,s Zmf,dr (12)
Trx 22r,d Z1r,d Zmf,dr

Values of the matrices can be found in the document describing the kinematics of the DCM (see
https://gitlab.esrf.fr/dehaeze/dcm-kinematics).



2 Relation Between Crystal position and
X-ray measured displacement

In this section, the impact of an error in the relative pose between the first and second crystals on the
output X-ray beam is studied.

This is very important in order to:
e link a measurement of the x-ray beam position to a default in the crystal position
e understand which pose default will have large impact on the output beam position/orientation

e calibrate the deformations of the metrology frame using and external metrology measuring the
x-ray beam position/orientation

In order to simplify the problem, the first crystal is supposed to be fixed (i.e. ideally positioned), and
only the motion of the second crystal is studied.

2.1 Axial motion of second crystal

Let’s consider the relation between the [y, 2] motion of the beam and the motion of the second crystal
(2, Ry, Ry).

Figure 2.1: Relation between d,, motion of the second crystal and vertical motion of the beam

d, =d.2cosb (2.1)

2.2 Ry motion of second crystal

dz = Dvlde; (22)
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Figure 2.2: Relation between vertical motion of the second crystal and vertical motion of the output

beam

with Dy, =~ 10m.

2.3 Rx motion of second crystal

dy = 2DV1m sin @ - dR; (23)



3 Ray Tracing

3.1 Definition of frame

Position Orientation
input beam x1,y1,2z1 s1
primary mirror Xp,yp,zp  np

reflected beam X2,y2,z2 s2
secondary mirror  xs,ys,zz  ns

output beam x3,y3,z3  s3
Dectector xd,yd,zd nd
Matlab
theta = 85%pi/180;
Matlab
thetas = pi/180*[5:1:85];
Matlab
yz = zeros(2, length(thetas));
Matlab
for i = 1:length(thetas)
theta = thetas(i);
Matlab
drx = 0;
dry = 0;
dz = 1e-9;
udrx = [cos(theta), 0, -sin(theta)];
Rdrx = cos(drx)*eye(3)+sin(drx)*[0, -udrx(3), udrx(2); udrx(3), 0, -udrx(1); -udrx(2), udrx(1), @] + (1-cos(drx))*(udrx'xudrx);

Rdry = [ cos(dry), 0, sin(dry); ...
0, 1, 0; ...
-sin(dry), @, cos(dry)];

Matlab
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pp = [0, 0, 0];
np = [cos(pi/2-theta), 0, sin(pi/2-theta)l;

[p2, s2] = get_plane_reflection(pl, s1, pp, np);

ps = pp ...
+ 0.07*[cos(theta), 0, -sin(theta)] ...
- npx10e-3./(2xcos(theta)) ...
+ npxdz;

ns = [Rdry*Rdrx*[cos(pi/2-theta), 0, sin(pi/2-theta)]']";

[p3, s3] = get_plane_reflection(p2, s2, ps, ns);

pd = [1, o, 0];
nd = [-1, 0, 0];

p4 = get_plane_reflection(p3, s3, pd, nd);
yz(:,1) = p4(2:3);
end

Matlab

figure;
hold on;
plot(180/pixthetas, 1e9*(yz(2,:) + 10e-3));

xlabel('Bragg Angle [degl'); ylabel('Z position [nm/m/nrad]');

Matlab

figure;
hold on;
plot(180/pi*thetas, 1e9xyz(1,:));

xlabel('Bragg Angle [degl'); ylabel('Y position [nm/m/nrad]');

Matlab
z = np;
y = [0,1,0];
x = cross(y,z);
xtall_rectangle = [pp + 0.02%y + 0.07%x;
pp - 0.02%y + 0.07*x;
pp - 0.02*%y - 0.07%x;
pp + 0.02xy - 0.07*x];
z = ns;
y = [0,cos(drx),sin(drx)];
x = cross(y,z);
xtal2_rectangle = [ps + 0.02%y + 0.07%x;
ps - 0.02%xy + 0.07*x;
ps - 0.02xy - 0.07%x;
ps + 0.02xy - 0.07*x];
Matlab
figure;
tiledlayout(2, 1, 'TileSpacing', 'Compact', 'Padding', 'None');

ax1 = nexttile();
hold on;
plot3(Lp1(1), p2(1)1,Ip1(2), p2(2)1, [p1(3), P2(3)1)
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plot3(L[p2(1), p3(1)1,Ip2(2), p3(2)]1, [p2(3), p3(3)D)

plot3(Lp3(1), p3(1)+0.3xs3(1)],[p3(2), p3(2)+0.3xs3(2)]1, [p3(3), p3(3)+0.3*s3(3)]1)
patch(xtall_rectangle(:,1), xtall_rectangle(:,2), xtall_rectangle(:,3), 'k')
patch(xtal2_rectangle(:,1), xtal2_rectangle(:,2), xtal2_rectangle(:,3), 'k')
hold off;

view(0,0)

axis equal

x1im([-0.1, @.15]1)

z1lim([-0.02, 0.01])

grid off;

xlabel('X")

ylabel('Y")

zlabel('Z")

ax2 = nexttile();

hold on;

plot3(Lp1(1), p2(1)1,[p1(2), p2(2)], [p1(3), P2(3)1)

plot3(Lp2(1), p3(1)1,0[p2(2), p3(2)]1, [p2(3), P3(3)D)

plot3(Lp3(1), p3(1)+0.3*s3(1)1,[p3(2), p3(2)+0.3xs3(2)]1, [p3(3), p3(3)+0.3*s3(3)1)
patch(xtall_rectangle(:,1), xtall_rectangle(:,2), xtall_rectangle(:,3), 'k')
patch(xtal2_rectangle(:,1), xtal2_rectangle(:,2), xtal2_rectangle(:,3), 'k')
hold off;

view(9,90)

axis equal

x1im([-0.1, 0.151)

z1im([-0.02, 0.01]1)

grid off;

xlabel('X")

ylabel('Y")

zlabel('Z")

Matlab

figure;

hold on;

plot3(Lp1(1), p2(1)1,0[p1(2), p2(2)1, [p1(3), P2(3)1)

plot3(L[p2(1), p3(1)1,[p2(2), p3(2)]1, [p2(3), p3(3)1)

plot3(Lp3(1), p3(1)+0.3xs3(1)],[p3(2), p3(2)+0.3xs3(2)]1, [p3(3), p3(3)+0.3*s3(3)]1)
surf(xtall_x, xtall_y, xtall_z)

patch(xtal2_rectangle(:,1), xtal2_rectangle(:,2), xtal2_rectangle(:,3), 'k')
hold off;

view(9,0)

axis equal

x1im([-0.1, @0.15]1)

z1lim([-0.02, 0.01])

grid off;

Matlab

figure;

hold on;

plot3(Lp1(1), p2(1)1,Lp1(2), p2(2)]1, [p1(3), P2(3)1)

plot3(Lp2(1), p3(1)1,0[p2(2), p3(2)1, [p2(3), pP3(3)D)

plot3(Lp3(1), p3(1)+0.3%xs3(1)1,[p3(2), p3(2)+0.3%s3(2)1, [p3(3), p3(3)+0.3*s3(3)])
surf(xtall_x, xtall_y, xtall_z)

patch(xtal2_rectangle(:,1), xtal2_rectangle(:,2), xtal2_rectangle(:,3), 'k')
hold off;

view(90,90)

axis equal

x1im([-0.1, ©.15])

z1im([-0.02, 0.01])

grid off;
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Figure 3.3: Motion of the output beam with dZ error
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4 Deformations of the Metrology Frame

The transformation matrices are valid only if the metrology frames are solid bodies.
The metrology frame itself is experiencing some deformations due to the gravity. When the bragg axis is
scanned, the effect of gravity on the metrology frame is changing and this introduce some measurement

€rrors.

This can be calibrated.

4.1 Measurement Setup

Two beam viewers:
e one close to the DCM to measure position of the beam
e one far away to the DCM to measure orientation of the beam
For each Bragg angle, the Fast Jacks are actuated to that the beam is at the center of the beam viewer.

Then, then position of the crystals as measured by the interferometers is recorded. This position is the
wanted position for a given Bragg angle.

Zl _— DCM

VLM

Figure 4.1: Schematic of the setup
Detector:
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/acal920-40gc/
Pixel size depends on the magnification used (1x, 6x, 12x).

Pixel size of camera is 5.86 um x 5.86 um. With typical magnification of 6x, pixel size is ~1.44um x
1.44um

14



https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1920-40gc/

Frame rate is: 42 fps

4.2 Simulations

The deformations of the metrology frame and therefore the expected interferometric measurements can
be computed as a function of the Bragg angle. This may be done using FE software.

4.3 Comparison

4.4 Test

Matlab

aa = importdata(”correctInterf-vim-220201.dat");

Matlab

figure;
plot(aa.data(:,1), aa.data(:,24))

4.5 Measured frame deformation

Matlab
data = table2array(readtable('itf_polynom.csv', 'NumHeaderLines',1));
th = pi/180*data(:,1);
fj = 0.030427 - 10.51e-3./(2*cos(th));

rx2 = le-9*data(:,2);
ry2 = le-9xdata(:,3);
rx1 = le-9xdata(:,4);
ryl = le-9*data(:,5);
Matlab
figure;
hold on;

plot(180/pi*th, lebxdetrend(-rx2, 1), '.")

hold off;

xlabel('Bragg Angle [degl');
ylabel('Measured $R_x$ [$\mu$rad]')
xlim([10, 751);

Strange that there is correlation between Rx and Ry.

15



Measured R, [urad]
o [\ = D

1
[}

Fse

eee o °, o o
%00y, ©
®ee, * o °e "o

* .

1
W

—
(e

40 50
Bragg Angle [deg]

Figure 4.2: description

Matlab

70

figure;

hold on;
plot(108/pixth,
plot(108/pi*th,
hold off;

1e9*detrend(rx1, @), '-',
1e9*detrend(ryl, @), '-'

)

'DisplayName’,
'DisplayName’,

"$Rx_1%")
"$Ry_1%")

xlabel('Bragg Angle [degl'); ylabel('Angle Offset [nradl');

legend()

Matlab

figure;
hold on;

plot(1e3*fj, detrend(rx2, 1),
plot(1e3*xfj, detrend(ry2, 1),

hold off;

'DisplayName’
'DisplayName’

"$Rx_1$")
'$Ry_1$")

)

)

xlabel('Fast Jack Displacement [mm]'); ylabel('Angle Offset [nrad]');

legend()

Matlab

f_rx2
f_ry2
f_rxi
f_ryl

fit(180/pixth,
fit(180/pixth,
fit(180/pixth,
fit(180/pixth,

1e9*rx2,
le9*ry2,
Te9*rx1,
Te9*ryl,

'poly4');
'polyd');
'poly4');
'poly4');

Matlab

figure;

hold on;
plot(180/pixth,
plot(180/pixth,
plot(180/pi*th,
plot(180/pi*th,
hold off;

f_rx2(180/pixth))
f_ry2(180/pixth))
f_rx1(180/pixth))
f_ry1(180/pi*th))

Matlab

figure;
hold on;

plot(th, f_rx2(th) - rx2)
plot(th, f_ry2(th) - ry2)
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plot(th, f_rx1(th) - rx1)
plot(th, f_ry1(th) - ryl)
hold off;

Matlab

figure;

hold on;

plot(th, f(th))
plot(th, rx2, '.")

4.6 Test

Matlab

filename =
< "/home/thomas/mnt/data_id21/22Jan/blc13550/id21/test_xtall_interf/test_xtall_interf_0001/test_xtall_interf_0001.h5";

Matlab

data = struct();

data.xtal1_111_u = double(h5read(filename, '/7.1/instrument/FPGA1_SSIM4/data'));
data.xtal1_111_m = double(h5read(filename, '/7.1/instrument/FPGA1_SSIM5/data'));
data.xtal1_111_d = double(h5read(filename, '/7.1/instrument/FPGA1_SSIM6/data'));
data.mframe_u = double(h5read(filename, '/7.1/instrument/FPGA2_SSIM3/data'));
data.mframe_dh = double(h5read(filename, '/7.1/instrument/FPGA2_SSIM4/data'));
data.mframe_dr = double(h5read(filename, '/7.1/instrument/FPGA2_SSIM5/data'));
data.bragg = (pi/180)*double(h5read(filename, '/7.1/instrument/FPGA2_SSIM6/data'));
data.fj_pos = 0.030427 - 10.5e-3./(2xcos(data.bragg));

data.time = double(h5read(filename, '/7.1/instrument/time/data'));

data.rx = le-9*double(h5read(filename, '/7.1/instrument/xtall_111_rx/data'));
data.ry = le-9*double(h5read(filename, '/7.1/instrument/xtall_111_ry/data'));

data.z = le-9*double(h5read(filename, '/7.1/instrument/xtall_111_z/data'));
data.drx = le-9*double(h5read(filename, '/7.1/instrument/xtal_111_drx_filter/data'));
data.dry = le-9*double(h5read(filename, '/7.1/instrument/xtal_111_dry_filter/data'));
data.dz = le-9*double(h5read(filename, '/7.1/instrument/xtal_111_dz_filter/data'));

data.xtal2_111_u = double(h5read(filename, '/7.1/instrument/FPGA1_SSIM10/data'))+10.5e6./(2*cos(data.bragg));
data.xtal2_111_m = double(h5read(filename, '/7.1/instrument/FPGA2_SSIM1/data'))+10.5e6./(2xcos(data.bragg));
data.xtal2_111_d = double(h5read(filename, '/7.1/instrument/FPGA2_SSIM2/data'))+10.5e6./(2*cos(data.bragg));

Matlab

figure;

hold on;

plot(108/pi*data.bragg, data.drx)
plot(108/pi*data.bragg, data.dry)
hold off;

4.7 Repeatability of frame deformation

Matlab

filename =
—s "/home/thomas/mnt/data_id21/22Jan/blc13550/id21/test_xtall_interf/test_xtall_interf_0001/test_xtall_interf_0001.h5";
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Figure 4.3: Drifts of the second crystal as a function of Bragg Angle

data_1

data_1.
data_1.
data_1.
data_1.
data_1.
data_1.
data_1.
data_1.
data_1.
data_1.
data_1.
data_1.
data_1.
data_1.
data_1.

struct();
time
bragg
fj_pos
xtal1_111_u
xtall_111_m
xtal1l_111_d
xtal2_111_u
xtal2_111_m
xtal2_111_d
mframe_u
mframe_dh
mframe_dr
drx
dry
dz

double(h5read(filename,
(pi/180)*double(h5read(filename,
0.030427 - 10.5e-3./(2*cos(data_1.bragg));

double(h5read(filename,

/7.1

double(h5read(filename,
double(h5read(filename,
double(h5read(filename,
double(h5read(filename,
double(h5read(filename,
double(h5read(filename,

double(h5read(filename, '
double(h5read(filename, '

= le-9*double(h5read(filename,
1e-9xdouble(h5read(filename,
1e-9xdouble(h5read(filename,

Matlab

/instrument/time/data'));
'/7.1/instrument/FPGA2_SSIM6/data"'));

/7.
/7.
/7.
AR
/7.
/7.

1/instrument/FPGA1_SSIM4/data'));
1/instrument/FPGA1_SSIM5/data'));
1/instrument/FPGA1_SSIM6/data'));
1/instrument/FPGA1_SSIM10@/data'))+10.5e6./(2*cos(data_1.bragg));
1/instrument/FPGA2_SSIM1/data'))+10.5e6./(2*cos(data_1.bragg));
1/instrument/FPGA2_SSIM2/data'))+10.5e6./(2*cos(data_1.bragg));

'/7.1/instrument/FPGA2_SSIM3/data'));

/7.1/instrument/FPGA2_SSIM4/data"'));
/7.1/instrument/FPGA2_SSIM5/data"'));
'/7.1/instrument/xtal_111_drx_filter/data'));
'/7.1/instrument/xtal_111_dry_filter/data'));
'/7.1/instrument/xtal_111_dz_filter/data'));

Matlab

data_2

data_2.
data_2.
data_2.
data_2.
data_2.
data_2.
data_2.
data_2.
data_2.
data_2.
data_2.
data_2.
data_2.
data_2.
data_2.

struct();
time

= double(h5read(filename,
bragg = (pi/18@)*double(h5read(filename,

/6.1

/instrument/time/data'));
'/6.1/instrument/FPGA2_SSIM6/data'));

fj_pos = 0.030427 - 10.5e-3./(2%cos(data_2.bragg));

xtall_111_u
xtall_111_m
xtall_111_d
xtal2_111_u
xtal2_111_m
xtal2_111_d
mframe_u

mframe_dh

double(h5read(filename,

double(h5read(filename,
double(h5read(filename,
double(h5read(filename,
double(h5read(filename,
double(h5read(filename,
double(h5read(filename,

double(h5read(filename, '

'/6.
'/6.
'/6.
'/6.
'/6.
'/6.

1/instrument/FPGA1_SSIM4/data'));
1/instrument/FPGA1_SSIM5/data'));
1/instrument/FPGA1_SSIM6/data'));
1/instrument/FPGA1_SSIM10@/data'))+10.5e6./(2*cos(data_2.bragg));
1/instrument/FPGA2_SSIM1/data'))+10.5e6./(2*cos(data_2.bragg));
1/instrument/FPGA2_SSIM2/data'))+10.5e6./(2*cos(data_2.bragg));

'/6.1/instrument/FPGA2_SSIM3/data'));

/6.1/instrument/FPGA2_SSIM4/data'));

mframe_dr = double(h5read(filename,

drx 1e-9xdouble(h5read(filename,
dry 1e-9xdouble(h5read(filename,
dz Te-9*double(h5read(filename,

'/6.1/instrument/FPGA2_SSIM5/data'));
'/6.1/instrument/xtal_111_drx_filter/data'));
'/6.1/instrument/xtal_111_dry_filter/data'));
'/6.1/instrument/xtal_111_dz_filter/data'));
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5 Attocube - Periodic Non-Linearity

Interferometers have some periodic nonlinearity [thurnerl5 fiber based distan sensin_inter].

The period is a fraction of the wavelength (usually A\/2) and can be due to polarization mixing, non per-

fect alignment of the optical components and unwanted reflected beams [ducourtieux18 towar high precis posit
thurnerl5 fiber based distan sensin inter|. The amplitude of the nonlinearity can vary from

a fraction of a nanometer to tens of nanometers.

In the DCM case, when using Attocube interferometers, the period non-linearity are in the order of
several nanometers with a period of 765nm. This is inducing some positioning errors which are too
high.

In order to overcome this issue, the periodic non-linearity of the interferometers have to be calibrated. To
do so, a displacement is imposed and measured both by the interferometers and by another metrology
system which does not have this nonlinearity. By comparing the two measured displacements, the
nonlinearity can be calibration. This process is performed over several periods in order to characterize
the error over the full stroke.

5.1 Measurement Setup

The metrology that will be compared with the interferometers are the strain gauges incorporated in the
PI piezoelectric stacks.

It is here supposed that the measured displacement by the strain gauges are converted to the displace-
ment at the interferometer locations. It is also supposed that we are at a certain Bragg angle, and that
the stepper motors are not moving: only the piezoelectric actuators are used.

Note that the strain gauges are measuring the relative displacement of the piezoelectric stacks
while the interferometers are measuring the relative motion between the second crystals and the
metrology frame.

Only the interferometers measuring the second crystal motion can be calibrated here.

As any deformations of the metrology frame of deformation of the crystal’s support can degrade
the quality of the calibration, it is better to perform this calibration without any bragg angle
motion.

The setup is schematically with the block diagram in Figure 5.1.
The signals are:

e u: Reference Signal sent to the PI controller (position where we wish to three stacks to be). The
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PI controller takes care or controlling to position as measured by the strain gauges such that it is
close to the reference position.

d: Disturbances affecting the position of the crystals

y: Displacement of the crystal as measured by one interferometer

e y,: Measurement of the motion in the frame of the interferometer by the strain gauge with some

noise ngy
e y,: Measurement of the crystal motion by the interferometer with some noise n,
ld Attocube n
a
U Y Periodic Ya
—>| G(s) . . —>
Non-linearity
Strain Gauge n
g
Yg
—>

Figure 5.1: Block Diagram schematic of the setup used to measure the periodic non-linearity of the
Attocube

The problem is to estimate the periodic non-linearity of the Attocube from the imperfect measurements
Yo and y,.

5.2 Choice of the reference signal

The main specifications for the reference signal are;
e sweep several periods (i.e. several micrometers)
e stay in the linear region of the strain gauge

e no excitation of mechanical modes (i.e. the frequency content of the signal should be at low
frequency)

e no phase shift due to limited bandwidth of both the interferometers and the strain gauge
e the full process should be quite fast
The travel range of the piezoelectric stacks is 15 micrometers, the resolution of the strain gauges

is 0.3nm and the maximum non-linearity is 0.15%. If one non-linear period is swept (765nm), the
maximum estimation error of the strain gauge is around 1nm.
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Based on the above discussion, one suitable excitation signal is a sinusoidal sweep with a frequency of
10Hz.

5.3 Repeatability of the non-linearity

Instead of calibrating the non-linear errors of the interferometers over the full fast jack stroke (25mm),
one can only calibrate the errors of one period.

For that, we need to make sure that the errors are repeatable from one period to the other and also the
period should be very precisely estimated (i.e. the wavelength of the laser).

Also, the laser wavelength should be very stable (specified at 50ppb).

One way to precisely estimate the laser wavelength is to estimate the non linear errors of the interfer-
ometer at an initial position, and then to estimate the non linear errors at a large offset, say 10mm.

5.4 Simulation

Suppose we have a first approximation of the non-linear period.

Matlab

period_est = 765e-9;

And suppose the real period of the non-linear errors is a little bit above (by 0.02nm):

Matlab

period_err = 0.02e-9;
period_nl = period_est + period_err;

The non-linear errors are first estimated at the beginning of the stroke (Figure 5.2).

From this only measurement, it is not possible to estimate with great accuracy the period of the error.
To do so, the same measurement is performed with a stroke of several millimeters (Figure 5.3).

It can be seen that there is an offset between the estimated and the measured errors. This is due to a
mismatch between the estimated period and the true period of the error.

Suppose the non-linear error is characterized by a periodic function &, to simplify let’s take a sinusoidal
function (this can be generalized by taking the fourier transform of the function):

E(x) =sin (E) (5.1)
A
with x the displacement and X the period of the error.

The measured error at xg is then:

Em(zg) = sin (%) (5.2)
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Figure 5.2: Estimation of the non-linear errors at the beginning of the stroke
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Figure 5.3: Estimated non-linear errors at a latter position
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And the estimated one is:

&.(z0) = sin ( i‘;) (5.3)

with Aeg¢ the estimated error’s period.

From Figure 5.3, we can see that there is an offset between the two curves. Let’s call this offset ¢,, we
then have:

Em(wo) = Ee(T0 + €1) (5.4)

Which gives us:
. (o _ . [Tot €
sin (7) = sin ()\est ) (5.5)

Finally:
A= >\est Mﬁfsz (56)
The estimated delay is computed:

Matlab

i_period = stroke > 5e-3-period_nl/2 & stroke < 5e-3+period_nl/2;
epsilon_x = finddelay(nl_errors(i_period), est_errors(i_period))

Results
Estimated delay x@ is -120 [nm]
And the period X can be estimated:

Matlab
period_fin = period_est * (5e-3)/(5e-3 + d_offset);

Results

The estimated period is 765.020 [nm]

And the results confirms that this method is working on paper.

When doing this computation, we suppose that there are at most one half period of offset between the
estimated and the measured non-linear (to not have any ambiguity whether the estimated period is too
large or too small). Mathematically this means that the displacement o should be smaller than:

1 A
I 5.7
x0<2 o (5.7)

With €, the absolute estimation error of the period in meters.

For instance, if we estimate the error on the period to be less than 0.1nm, the maximum displacement
is:
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Matlab

max_x@ = 0.5 * 765e-9 * (765e-9)/(0.1e-9);

Results

The maximum stroke is 2.9 [mm]

5.5 Measurements

We have some constrains on the way the motion is imposed and measured:

e We want the frequency content of the imposed motion to be at low frequency in order not to
induce vibrations of the structure. We have to make sure the forces applied by the piezoelectric
actuator only moves the crystal and not the fast jack below. Therefore, we have to move much
slower than the first resonance frequency in the system.

e As both y, and y, should have rather small noise, we have to filter them with low pass filters.
The cut-off frequency of the low pass filter should be high as compared to the motion (to not
induce any distortion) but still reducing sufficiently the noise. Let’s say we want the noise to be

less than 1nm (60).
Suppose we have the power spectral density (PSD) of both n, and ng.
O Take the PSD of the Attocube
[0 Take the PSD of the strain gauge

O Using 2nd order low pass filter, estimate the required low pass filter cut-off frequency to have
sufficiently low noise
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