#+TITLE: ESRF Double Crystal Monochromator - Feedback Controller :DRAWER: #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+BIND: org-latex-image-default-option "scale=1" #+BIND: org-latex-image-default-width "" #+LaTeX_CLASS: scrreprt #+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full] #+LaTeX_HEADER_EXTRA: \input{preamble.tex} #+LATEX_HEADER_EXTRA: \bibliography{ref} #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :tangle no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: #+begin_export html

This report is also available as a pdf.


#+end_export #+latex: \clearpage * Introduction :ignore: * Estimation of Sensitivity Function ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** Load Data Two scans are performed: - =1.1= in mode B - =3.1= in mode C The difference between the two is that mode C adds the feedback controller. #+begin_src matlab %% Load Data of the new LUT method Ts = 0.1; ol_drx = 1e-9*double(h5read('xanes_0003.h5','/1.1/measurement/xtal_111_drx_filter')); % Rx [rad] cl_drx = 1e-9*double(h5read('xanes_0003.h5','/3.1/measurement/xtal_111_drx_filter')); % Rx [rad] ol_dry = 1e-9*double(h5read('xanes_0003.h5','/1.1/measurement/xtal_111_dry_filter')); % Ry [rad] cl_dry = 1e-9*double(h5read('xanes_0003.h5','/3.1/measurement/xtal_111_dry_filter')); % Ry [rad] t = linspace(Ts, Ts*length(ol_drx), length(ol_drx)); #+end_src By comparison the frequency content of the crystal orientation errors between mode B and mode C, it is possible to estimate the Sensitivity transfer function (Figure [[fig:sensitivity_function_drx_est]]). #+begin_src matlab win = hanning(ceil(1/Ts)); [pxx_ol_drx, f] = pwelch(ol_drx, win, [], [], 1/Ts); [pxx_cl_drx, ~] = pwelch(cl_drx, win, [], [], 1/Ts); [pxx_ol_dry, ~] = pwelch(ol_dry, win, [], [], 1/Ts); [pxx_cl_dry, ~] = pwelch(cl_dry, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none %% Estimation of Sensitivity function figure; hold on; plot(f, sqrt(pxx_cl_drx)./sqrt(pxx_ol_drx), 'DisplayName', '$R_x$'); plot(f, sqrt(pxx_cl_dry)./sqrt(pxx_ol_dry), 'DisplayName', '$R_y$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Sensitivity Function'); legend('location', 'northwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/sensitivity_function_drx_est.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:sensitivity_function_drx_est #+caption: Estimation of the sensitivity transfer function magnitude #+RESULTS: [[file:figs/sensitivity_function_drx_est.png]] ** Controller #+begin_src matlab load('X_tal_cage_PID.mat', 'K'); #+end_src #+begin_src matlab :exports none %% Bode plot for the controller figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(K(1,1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [-]'); set(gca, 'XTickLabel',[]); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(K(1,1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/bode_plot_cur_controller.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:bode_plot_cur_controller #+caption: Bode Plot of the Controller #+RESULTS: [[file:figs/bode_plot_cur_controller.png]] ** Test #+begin_src matlab Ts = 5e-3; cl_drx = 1e-9*double(h5read('xanes_0003.h5','/16.1/measurement/xtal_111_drx_filter')); % Rx [rad] ol_drx = 1e-9*double(h5read('xanes_0003.h5','/18.1/measurement/xtal_111_drx_filter')); % Rx [rad] t = linspace(Ts, Ts*length(ol_drx), length(ol_drx)); #+end_src #+begin_src matlab figure; hold on; plot(t, ol_drx) plot(t, cl_drx) #+end_src #+begin_src matlab win = hanning(ceil(10/Ts)); [pxx_ol_drx, f] = pwelch(ol_drx, win, [], [], 1/Ts); [pxx_cl_drx, ~] = pwelch(cl_drx, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none %% Estimation of Sensitivity function figure; hold on; plot(f, sqrt(pxx_cl_drx)./sqrt(pxx_ol_drx), 'DisplayName', '$R_x$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Sensitivity Function'); legend('location', 'northwest'); #+end_src #+begin_src matlab :exports none %% Estimation of Sensitivity function figure; hold on; plot(f, sqrt(pxx_ol_drx), 'DisplayName', '$R_x$ - OL'); plot(f, sqrt(pxx_cl_drx), 'DisplayName', '$R_x$ - CL'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density [$m/\sqrt{Hz}$]'); legend('location', 'northwest'); #+end_src * System Identification ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** Identification ID24 #+begin_src matlab load('test_id_id24_3.mat') #+end_src #+begin_src matlab t = 1e-4*ones(size(fjpur, 1), 1); ur.dz = fjpur(:,1) - mean(fjpur(:,1)); ur.dry = fjpur(:,2) - mean(fjpur(:,2)); ur.drx = fjpur(:,3) - mean(fjpur(:,3)); ur.u = fjpur(:,7) - mean(fjpur(:,7)); uh.dz = fjpuh(:,1) - mean(fjpuh(:,1)); uh.dry = fjpuh(:,2) - mean(fjpuh(:,2)); uh.drx = fjpuh(:,3) - mean(fjpuh(:,3)); uh.u = fjpuh(:,8) - mean(fjpuh(:,8)); d.dz = fjpd(:,1) - mean(fjpd(:,1)); d.dry = fjpd(:,2) - mean(fjpd(:,2)); d.drx = fjpd(:,3) - mean(fjpd(:,3)); d.u = fjpd(:,9) - mean(fjpd(:,9)); #+end_src #+begin_src matlab J_a_311 = [1, 0.14, -0.0675 1, 0.14, 0.1525 1, -0.14, 0.0425]; J_a_111 = [1, 0.14, -0.1525 1, 0.14, 0.0675 1, -0.14, -0.0425]; ur.y = [J_a_311 * [-ur.dz, ur.dry,-ur.drx]']'; uh.y = [J_a_311 * [-uh.dz, uh.dry,-uh.drx]']'; d.y = [J_a_311 * [-d.dz, d.dry, -d.drx]']'; #+end_src #+begin_src matlab %% Sampling Time and Frequency Ts = 1e-4; % [s] Fs = 1/Ts; % [Hz] % Hannning Windows win = hanning(ceil(1*Fs)); #+end_src #+begin_src matlab %% And we get the frequency vector [G_ur, f] = tfestimate(ur.u, ur.y, win, [], [], 1/Ts); [G_uh, ~] = tfestimate(uh.u, uh.y, win, [], [], 1/Ts); [G_d, ~] = tfestimate(d.u, d.y, win, [], [], 1/Ts); #+end_src #+begin_src matlab [coh_ur, ~] = mscohere(ur.u, ur.y, win, [], [], 1/Ts); [coh_uh, ~] = mscohere(uh.u, uh.y, win, [], [], 1/Ts); [coh_d, ~] = mscohere(d.u, d.y, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none %% Coherence figure; tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); hold on; plot(f, coh_ur(:,1), 'DisplayName', '$u_r$'); plot(f, coh_uh(:,2), 'DisplayName', '$u_h$'); plot(f, coh_d( :,3), 'DisplayName', '$u_d$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Coherence'); legend('location', 'southeast'); xlim([1, 1e3]); #+end_src #+begin_src matlab :exports none %% Bode plot of the DCM dynamics in the frame of the Fast Jacks figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_ur(:,1)), 'DisplayName', '$u_r$'); plot(f, abs(G_uh(:,2)), 'DisplayName', '$u_h$'); plot(f, abs(G_d( :,3)), 'DisplayName', '$u_d$'); plot(f, abs(G_ur(:,2)), 'color', [0, 0, 0, 0.2], ... 'DisplayName', 'Off Diagonal'); plot(f, abs(G_ur(:,3)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_uh(:,1)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_uh(:,3)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_d(:,1)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_d(:,2)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-2, 1e2]); legend('location', 'northwest'); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_ur(:,1))); plot(f, 180/pi*angle(G_uh(:,2))); plot(f, 180/pi*angle(G_d(:,3))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); % ylim([-45, 45]); linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); #+end_src ** Identification #+begin_src matlab ur = load('FJPUR_step.mat'); uh = load('FJPUH_step.mat'); d = load('FJPD_step.mat'); #+end_src | 1 | dz311 | | 2 | dry311 | | 3 | drx311 | | 4 | dz111 | | 5 | dry111 | | 6 | drx111 | | 7 | fjpur | | 8 | fjpuh | | 9 | fjpd | | 10 | bragg | #+begin_src matlab ur.time = ur.time - ur.time(1); ur.allValues(:, 1) = ur.allValues(:, 1) - mean(ur.allValues(ur.time<1, 1)); ur.allValues(:, 2) = ur.allValues(:, 2) - mean(ur.allValues(ur.time<1, 2)); ur.allValues(:, 3) = ur.allValues(:, 3) - mean(ur.allValues(ur.time<1, 3)); t_filt = ur.time > 48 & ur.time < 60; ur.u = ur.allValues(t_filt, 7); ur.y_111 = [-ur.allValues(t_filt, 1), ur.allValues(t_filt, 2), ur.allValues(t_filt, 3)]; #+end_src #+begin_src matlab uh.time = uh.time - uh.time(1); uh.allValues(:, 1) = uh.allValues(:, 1) - mean(uh.allValues(uh.time<1, 1)); uh.allValues(:, 2) = uh.allValues(:, 2) - mean(uh.allValues(uh.time<1, 2)); uh.allValues(:, 3) = uh.allValues(:, 3) - mean(uh.allValues(uh.time<1, 3)); uh.u = uh.allValues(t_filt, 8); uh.y_111 = [-uh.allValues(t_filt, 1), uh.allValues(t_filt, 2), uh.allValues(t_filt, 3)]; #+end_src #+begin_src matlab d.time = d.time - d.time(1); d.allValues(:, 1) = d.allValues(:, 1) - mean(d.allValues(d.time<1, 1)); d.allValues(:, 2) = d.allValues(:, 2) - mean(d.allValues(d.time<1, 2)); d.allValues(:, 3) = d.allValues(:, 3) - mean(d.allValues(d.time<1, 3)); d.u = d.allValues(t_filt, 9); d.y_111 = [-d.allValues(t_filt, 1), d.allValues(t_filt, 2), d.allValues(t_filt, 3)]; #+end_src #+begin_src matlab J_a_111 = [1, 0.14, -0.0675 1, 0.14, 0.1525 1, -0.14, 0.0425]; J_a_311 = [1, 0.14, -0.1525 1, 0.14, 0.0675 1, -0.14, -0.0425]; ur.y = [J_a_311 * ur.y_111']'; uh.y = [J_a_311 * uh.y_111']'; d.y = [J_a_311 * d.y_111']'; #+end_src #+begin_src matlab %% Sampling Time and Frequency Ts = 1e-4; % [s] Fs = 1/Ts; % [Hz] % Hannning Windows win = hanning(ceil(5*Fs)); #+end_src #+begin_src matlab %% And we get the frequency vector [G_ur, f] = tfestimate(ur.u, ur.y, win, [], [], 1/Ts); [G_uh, ~] = tfestimate(uh.u, uh.y, win, [], [], 1/Ts); [G_d, ~] = tfestimate(d.u, d.y, win, [], [], 1/Ts); #+end_src #+begin_src matlab [coh_ur, ~] = mscohere(ur.u, ur.y, win, [], [], 1/Ts); [coh_uh, ~] = mscohere(uh.u, uh.y, win, [], [], 1/Ts); [coh_d, ~] = mscohere(d.u, d.y, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none %% Coherence figure; tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); hold on; plot(f, coh_ur(:,1), 'DisplayName', '$u_r$'); plot(f, coh_uh(:,2), 'DisplayName', '$u_h$'); plot(f, coh_d( :,3), 'DisplayName', '$u_d$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Coherence'); legend('location', 'southeast'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/coherence_id_dcm_dyn.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:coherence_id_dcm_dyn #+caption: Coherence #+RESULTS: [[file:figs/coherence_id_dcm_dyn.png]] #+begin_src matlab :exports none %% Bode plot of the DCM dynamics in the frame of the Fast Jacks figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_ur(:,1)), 'DisplayName', '$u_r$'); plot(f, abs(G_uh(:,2)), 'DisplayName', '$u_h$'); plot(f, abs(G_d( :,3)), 'DisplayName', '$u_d$'); plot(f, abs(G_ur(:,2)), 'color', [0, 0, 0, 0.2], ... 'DisplayName', 'Off Diagonal'); plot(f, abs(G_ur(:,3)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_uh(:,1)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_uh(:,3)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_d(:,1)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_d(:,2)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-2, 1e2]); legend('location', 'southeast'); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_ur(:,1))); plot(f, 180/pi*angle(G_uh(:,2))); plot(f, 180/pi*angle(G_d(:,3))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); % ylim([-45, 45]); linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/bode_plot_dcm_dynamics.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:bode_plot_dcm_dynamics #+caption: Bode Plot of the DCM dynamics in the frame of the fast jack. #+RESULTS: [[file:figs/bode_plot_dcm_dynamics.png]] #+begin_src matlab %% Previously used controller load('X_tal_cage_PID.mat', 'K'); #+end_src #+begin_src matlab %% Controller design s = tf('s'); % Lead a = 4; % Amount of phase lead / width of the phase lead / high frequency gain wc = 2*pi*20; % Frequency with the maximum phase lead [rad/s] % Low Pass Filter w0 = 2*pi*100; % Cut-off frequency [rad/s] xi = 0.4; % Damping Ratio Kb = eye(3)*(2*pi*20)^2/(s^2) *1/(sqrt(a))* (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))) * 1/(1 + 2*xi/w0*s + s^2/w0^2);; #+end_src #+begin_src matlab :exports none %% Loop Gain figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_ur(:,1).*squeeze(freqresp(Kb(1,1), f, 'Hz'))), 'DisplayName', '$u_r$'); plot(f, abs(G_uh(:,2).*squeeze(freqresp(Kb(2,2), f, 'Hz'))), 'DisplayName', '$u_h$'); plot(f, abs(G_d( :,3).*squeeze(freqresp(Kb(3,3), f, 'Hz'))), 'DisplayName', '$d$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e2]); legend('location', 'northeast'); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_ur(:,1).*squeeze(freqresp(K(1,1), f, 'Hz')))); plot(f, 180/pi*angle(G_uh(:,2).*squeeze(freqresp(K(2,2), f, 'Hz')))); plot(f, 180/pi*angle(G_d(:,3).*squeeze(freqresp(K(3,3), f, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loop_gain_dcm_contr_simple.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:loop_gain_dcm_contr_simple #+caption: Loop gain #+RESULTS: [[file:figs/loop_gain_dcm_contr_simple.png]] #+begin_src matlab :exports none %% Loop Gain figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_d(:,3).*squeeze(freqresp(K(1,1), f, 'Hz')))); plot(f, abs(G_d(:,3).*squeeze(freqresp(Kb(1,1), f, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e2]); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_d(:,3).*squeeze(freqresp(K(1,1), f, 'Hz')))); plot(f, 180/pi*angle(G_d(:,3).*squeeze(freqresp(Kb(1,1), f, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loop_gain_diag_old_new_contr.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:loop_gain_diag_old_new_contr #+caption: Loop gain #+RESULTS: [[file:figs/loop_gain_diag_old_new_contr.png]] Compare Sensitivity functions #+begin_src matlab :exports none %% Sensitivity function figure; tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); hold on; plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(K(1,1), f, 'Hz')))); plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(Kb(1,1), f, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); ylim([1e-2, 1e1]); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/sensitivity_comp.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:sensitivity_comp #+caption: Comparison of sensitivity functions #+RESULTS: [[file:figs/sensitivity_comp.png]] #+begin_src matlab L = zeros(3, 3, length(f)); Lb = zeros(3, 3, length(f)); for i_f = 1:length(f) L(:,:,i_f) = [G_ur(i_f,:); G_uh(i_f,:); G_d(i_f,:)]*freqresp(K , f(i_f), 'Hz'); Lb(:,:,i_f) = [G_ur(i_f,:); G_uh(i_f,:); G_d(i_f,:)]*freqresp(Kb, f(i_f), 'Hz'); end #+end_src #+begin_src matlab :exports none %% Compute the Eigenvalues of the loop gain Ldet = zeros(3, length(f)); Ldetb = zeros(3, length(f)); % Loop gain for i_f = 1:length(f) Ldet( :, i_f) = eig(squeeze(L( :,:,i_f))); Ldetb(:, i_f) = eig(squeeze(Lb(:,:,i_f))); end #+end_src #+begin_src matlab :exports none %% Plot of the eigenvalues of L in the complex plane figure; hold on; for i = 1:size(Ldet,1) plot(real(Ldet(i,:)), imag(Ldet(i,:)), '.', 'color', colors(1, :)); plot(real(Ldet(i,:)), -imag(Ldet(i,:)), '.', 'color', colors(1, :)); plot(real(Ldetb(i,:)), imag(Ldetb(i,:)), '.', 'color', colors(2, :)); plot(real(Ldetb(i,:)), -imag(Ldetb(i,:)), '.', 'color', colors(2, :)); end plot(-1, 0, 'kx', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real'); ylabel('Imag'); xlim([-3, 1]); ylim([-2, 2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loci_loop_gain_comp_controllers.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+caption: Root Locus #+RESULTS: [[file:figs/loci_loop_gain_comp_controllers.png]] ** Identification - New #+begin_src matlab ur = load('FJPUR_step_new.mat'); uh = load('FJPUH_step_new.mat'); d = load('FJPD_step_new.mat'); #+end_src | 1 | dz311 | | 2 | dry311 | | 3 | drx311 | | 4 | dz111 | | 5 | dry111 | | 6 | drx111 | | 7 | fjpur | | 8 | fjpuh | | 9 | fjpd | | 10 | bragg | #+begin_src matlab ur.time = ur.time - ur.time(1); ur.allValues(:, 1) = ur.allValues(:, 1) - mean(ur.allValues(ur.time<0.1, 1)); ur.allValues(:, 2) = ur.allValues(:, 2) - mean(ur.allValues(ur.time<0.1, 2)); ur.allValues(:, 3) = ur.allValues(:, 3) - mean(ur.allValues(ur.time<0.1, 3)); t_filt = ur.time < 5; ur.u = ur.allValues(t_filt, 7); ur.y_111 = [-ur.allValues(t_filt, 1), ur.allValues(t_filt, 2), ur.allValues(t_filt, 3)]; #+end_src #+begin_src matlab uh.time = uh.time - uh.time(1); uh.allValues(:, 1) = uh.allValues(:, 1) - mean(uh.allValues(uh.time<0.1, 1)); uh.allValues(:, 2) = uh.allValues(:, 2) - mean(uh.allValues(uh.time<0.1, 2)); uh.allValues(:, 3) = uh.allValues(:, 3) - mean(uh.allValues(uh.time<0.1, 3)); uh.u = uh.allValues(t_filt, 8); uh.y_111 = [-uh.allValues(t_filt, 1), uh.allValues(t_filt, 2), uh.allValues(t_filt, 3)]; #+end_src #+begin_src matlab d.time = d.time - d.time(1); d.allValues(:, 1) = d.allValues(:, 1) - mean(d.allValues(d.time<0.1, 1)); d.allValues(:, 2) = d.allValues(:, 2) - mean(d.allValues(d.time<0.1, 2)); d.allValues(:, 3) = d.allValues(:, 3) - mean(d.allValues(d.time<0.1, 3)); d.u = d.allValues(t_filt, 9); d.y_111 = [-d.allValues(t_filt, 1), d.allValues(t_filt, 2), d.allValues(t_filt, 3)]; #+end_src #+begin_src matlab J_a_111 = [1, 0.14, -0.0675 1, 0.14, 0.1525 1, -0.14, 0.0425]; J_a_311 = [1, 0.14, -0.1525 1, 0.14, 0.0675 1, -0.14, -0.0425]; ur.y = [J_a_311 * ur.y_111']'; uh.y = [J_a_311 * uh.y_111']'; d.y = [J_a_311 * d.y_111']'; #+end_src #+begin_src matlab %% Sampling Time and Frequency Ts = 1e-4; % [s] Fs = 1/Ts; % [Hz] % Hannning Windows win = hanning(ceil(5*Fs)); #+end_src #+begin_src matlab %% And we get the frequency vector [G_ur, f] = tfestimate(ur.u, ur.y, win, [], [], 1/Ts); [G_uh, ~] = tfestimate(uh.u, uh.y, win, [], [], 1/Ts); [G_d, ~] = tfestimate(d.u, d.y, win, [], [], 1/Ts); #+end_src #+begin_src matlab [coh_ur, ~] = mscohere(ur.u, ur.y, win, [], [], 1/Ts); [coh_uh, ~] = mscohere(uh.u, uh.y, win, [], [], 1/Ts); [coh_d, ~] = mscohere(d.u, d.y, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none %% Coherence figure; tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); hold on; plot(f, coh_ur(:,1), 'DisplayName', '$u_r$'); plot(f, coh_uh(:,2), 'DisplayName', '$u_h$'); plot(f, coh_d( :,3), 'DisplayName', '$u_d$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Coherence'); legend('location', 'southeast'); xlim([1, 1e3]); #+end_src #+begin_src matlab :exports none %% Bode plot of the DCM dynamics in the frame of the Fast Jacks figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_ur(:,1)), 'DisplayName', '$u_r$'); plot(f, abs(G_uh(:,2)), 'DisplayName', '$u_h$'); plot(f, abs(G_d( :,3)), 'DisplayName', '$u_d$'); plot(f, abs(G_ur(:,2)), 'color', [0, 0, 0, 0.2], ... 'DisplayName', 'Off Diagonal'); plot(f, abs(G_ur(:,3)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_uh(:,1)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_uh(:,3)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_d(:,1)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_d(:,2)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-2, 1e2]); legend('location', 'southeast'); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_ur(:,1))); plot(f, 180/pi*angle(G_uh(:,2))); plot(f, 180/pi*angle(G_d(:,3))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); % ylim([-45, 45]); linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); #+end_src #+begin_src matlab %% Previously used controller load('X_tal_cage_PID.mat', 'K'); #+end_src #+begin_src matlab %% Controller design s = tf('s'); % Lead a = 4; % Amount of phase lead / width of the phase lead / high frequency gain wc = 2*pi*20; % Frequency with the maximum phase lead [rad/s] % Low Pass Filter w0 = 2*pi*100; % Cut-off frequency [rad/s] xi = 0.4; % Damping Ratio Kb = eye(3)*(2*pi*20)^2/(s^2) *1/(sqrt(a))* (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))) * 1/(1 + 2*xi/w0*s + s^2/w0^2);; #+end_src #+begin_src matlab :exports none %% Loop Gain figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_ur(:,1).*squeeze(freqresp(Kb(1,1), f, 'Hz'))), 'DisplayName', '$u_r$'); plot(f, abs(G_uh(:,2).*squeeze(freqresp(Kb(2,2), f, 'Hz'))), 'DisplayName', '$u_h$'); plot(f, abs(G_d( :,3).*squeeze(freqresp(Kb(3,3), f, 'Hz'))), 'DisplayName', '$d$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e2]); legend('location', 'northeast'); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_ur(:,1).*squeeze(freqresp(K(1,1), f, 'Hz')))); plot(f, 180/pi*angle(G_uh(:,2).*squeeze(freqresp(K(2,2), f, 'Hz')))); plot(f, 180/pi*angle(G_d(:,3).*squeeze(freqresp(K(3,3), f, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); #+end_src Compare Sensitivity functions #+begin_src matlab :exports none %% Sensitivity function figure; tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); hold on; plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(K(1,1), f, 'Hz')))); plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(Kb(1,1), f, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); ylim([1e-2, 1e1]); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/sensitivity_comp.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:sensitivity_comp #+caption: Comparison of sensitivity functions #+RESULTS: [[file:figs/sensitivity_comp.png]] #+begin_src matlab L = zeros(3, 3, length(f)); Lb = zeros(3, 3, length(f)); for i_f = 1:length(f) L(:,:,i_f) = [G_ur(i_f,:); G_uh(i_f,:); G_d(i_f,:)]*freqresp(K , f(i_f), 'Hz'); Lb(:,:,i_f) = [G_ur(i_f,:); G_uh(i_f,:); G_d(i_f,:)]*freqresp(Kb, f(i_f), 'Hz'); end #+end_src #+begin_src matlab :exports none %% Compute the Eigenvalues of the loop gain Ldet = zeros(3, length(f)); Ldetb = zeros(3, length(f)); % Loop gain for i_f = 1:length(f) Ldet( :, i_f) = eig(squeeze(L( :,:,i_f))); Ldetb(:, i_f) = eig(squeeze(Lb(:,:,i_f))); end #+end_src #+begin_src matlab :exports none %% Plot of the eigenvalues of L in the complex plane figure; hold on; for i = 1:size(Ldet,1) plot(real(Ldet(i,:)), imag(Ldet(i,:)), '.', 'color', colors(1, :)); plot(real(Ldet(i,:)), -imag(Ldet(i,:)), '.', 'color', colors(1, :)); plot(real(Ldetb(i,:)), imag(Ldetb(i,:)), '.', 'color', colors(2, :)); plot(real(Ldetb(i,:)), -imag(Ldetb(i,:)), '.', 'color', colors(2, :)); end plot(-1, 0, 'kx', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real'); ylabel('Imag'); xlim([-3, 1]); ylim([-2, 2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loci_loop_gain_comp_controllers.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+caption: Root Locus #+RESULTS: [[file:figs/loci_loop_gain_comp_controllers.png]] ** Identification - White noise #+begin_src matlab ur = load('fjpur_white_noise.mat'); uh = load('fjpuh_white_noise.mat'); d = load('fjpd_white_noise.mat'); #+end_src | 1 | dz111 | | 2 | dry111 | | 3 | drx111 | | 4 | fjpur | | 5 | fjpuh | | 6 | fjpd | | 7 | bragg | #+begin_src matlab ur.time = ur.time - ur.time(1); ur.drx = ur.drx - mean(ur.drx); ur.dry = ur.dry - mean(ur.dry); ur.dz = ur.dz - mean(ur.dz); #+end_src #+begin_src matlab uh.time = uh.time - uh.time(1); uh.drx = uh.drx - mean(uh.drx); uh.dry = uh.dry - mean(uh.dry); uh.dz = uh.dz - mean(uh.dz); #+end_src #+begin_src matlab d.time = d.time - d.time(1); d.drx = d.drx - mean(d.drx); d.dry = d.dry - mean(d.dry); d.dz = d.dz - mean(d.dz); #+end_src #+begin_src matlab J_a_111 = [1, 0.14, -0.0675 1, 0.14, 0.1525 1, -0.14, 0.0425]; ur.y = [J_a_111 * [-ur.dz, ur.dry, ur.drx]']'; uh.y = [J_a_111 * [-uh.dz, uh.dry, uh.drx]']'; d.y = [J_a_111 * [-d.dz, d.dry, d.drx]']'; #+end_src #+begin_src matlab %% Sampling Time and Frequency Ts = 1e-4; % [s] Fs = 1/Ts; % [Hz] % Hannning Windows win = hanning(ceil(0.5*Fs)); #+end_src #+begin_src matlab %% And we get the frequency vector [G_ur, f] = tfestimate(ur.fjpur, ur.y, win, [], [], 1/Ts); [G_uh, ~] = tfestimate(uh.fjpuh, uh.y, win, [], [], 1/Ts); [G_d, ~] = tfestimate(d.fjpd, d.y, win, [], [], 1/Ts); #+end_src #+begin_src matlab [coh_ur, ~] = mscohere(ur.fjpur, ur.y, win, [], [], 1/Ts); [coh_uh, ~] = mscohere(uh.fjpuh, uh.y, win, [], [], 1/Ts); [coh_d, ~] = mscohere(d.fjpd, d.y, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none %% Coherence figure; tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); hold on; plot(f, coh_ur(:,1), 'DisplayName', '$u_r$'); plot(f, coh_uh(:,2), 'DisplayName', '$u_h$'); plot(f, coh_d(:,3), 'DisplayName', '$d$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Coherence'); legend('location', 'southeast'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/coherence_ident_noise.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:coherence_ident_noise #+caption: description #+RESULTS: [[file:figs/coherence_ident_noise.png]] #+begin_src matlab :exports none %% Bode plot of the DCM dynamics in the frame of the Fast Jacks figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_ur(:,1)), 'DisplayName', '$u_r$'); plot(f, abs(G_uh(:,2)), 'DisplayName', '$u_h$'); plot(f, abs(G_d( :,3)), 'DisplayName', '$u_d$'); plot(f, abs(G_ur(:,2)), 'color', [0, 0, 0, 0.2], ... 'DisplayName', 'Off Diagonal'); plot(f, abs(G_ur(:,3)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_uh(:,1)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_uh(:,3)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_d(:,1)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(G_d(:,2)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-2, 1e2]); legend('location', 'northwest'); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_ur(:,1))); plot(f, 180/pi*angle(G_uh(:,2))); plot(f, 180/pi*angle(G_d(:,3))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); % ylim([-45, 45]); linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/bode_plot_ident_noise.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:bode_plot_ident_noise #+caption: Bode Plot of the DCM dynamics in the frame of the fast jack. #+RESULTS: [[file:figs/bode_plot_ident_noise.png]] #+begin_src matlab %% Previously used controller load('X_tal_cage_PID.mat', 'K'); #+end_src #+begin_src matlab %% Controller design s = tf('s'); % Lead a = 8; % Amount of phase lead / width of the phase lead / high frequency gain wc = 2*pi*20; % Frequency with the maximum phase lead [rad/s] % Low Pass Filter w0 = 2*pi*80; % Cut-off frequency [rad/s] xi = 0.4; % Damping Ratio Kb = eye(3)*(2*pi*20)^2/(s^2) *1/(sqrt(a))* (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))) * 1/(1 + 2*xi/w0*s + s^2/w0^2);; #+end_src #+begin_src matlab :exports none %% Loop Gain figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_ur(:,1).*squeeze(freqresp(Kb(1,1), f, 'Hz'))), 'DisplayName', '$u_r$'); plot(f, abs(G_uh(:,2).*squeeze(freqresp(Kb(2,2), f, 'Hz'))), 'DisplayName', '$u_h$'); plot(f, abs(G_d( :,3).*squeeze(freqresp(Kb(3,3), f, 'Hz'))), 'DisplayName', '$d$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e2]); legend('location', 'northeast'); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_ur(:,1).*squeeze(freqresp(Kb(1,1), f, 'Hz')))); plot(f, 180/pi*angle(G_uh(:,2).*squeeze(freqresp(Kb(2,2), f, 'Hz')))); plot(f, 180/pi*angle(G_d(:,3).*squeeze(freqresp(Kb(3,3), f, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loop_gain_dcm_contr_simple.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:loop_gain_dcm_contr_simple #+caption: Loop gain #+RESULTS: [[file:figs/loop_gain_dcm_contr_simple.png]] #+begin_src matlab :exports none %% Loop Gain figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_ur(:,1).*squeeze(freqresp(K(1,1), f, 'Hz'))), 'color', colors(1,:), 'DisplayName', 'Old K'); plot(f, abs(G_uh(:,2).*squeeze(freqresp(K(2,2), f, 'Hz'))), 'color', colors(1,:), 'HandleVisibility', 'off'); plot(f, abs(G_d(:,3).*squeeze(freqresp(K(3,3), f, 'Hz'))), 'color', colors(1,:), 'HandleVisibility', 'off'); plot(f, abs(G_ur(:,1).*squeeze(freqresp(Kb(1,1), f, 'Hz'))), 'color', colors(2,:), 'DisplayName', 'New K'); plot(f, abs(G_uh(:,2).*squeeze(freqresp(Kb(2,2), f, 'Hz'))), 'color', colors(2,:), 'HandleVisibility', 'off'); plot(f, abs(G_d(:,3).*squeeze(freqresp(Kb(3,3), f, 'Hz'))), 'color', colors(2,:), 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e2]); legend('location', 'northeast'); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_ur(:,1).*squeeze(freqresp(K(1,1), f, 'Hz'))), 'color', colors(1,:)); plot(f, 180/pi*angle(G_uh(:,2).*squeeze(freqresp(K(2,2), f, 'Hz'))), 'color', colors(1,:)); plot(f, 180/pi*angle(G_d(:,3).*squeeze(freqresp(K(3,3), f, 'Hz'))), 'color', colors(1,:)); plot(f, 180/pi*angle(G_ur(:,1).*squeeze(freqresp(Kb(1,1), f, 'Hz'))), 'color', colors(2,:)); plot(f, 180/pi*angle(G_uh(:,2).*squeeze(freqresp(Kb(2,2), f, 'Hz'))), 'color', colors(2,:)); plot(f, 180/pi*angle(G_d(:,3).*squeeze(freqresp(Kb(3,3), f, 'Hz'))), 'color', colors(2,:)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loop_gain_diag_old_new_contr.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:loop_gain_diag_old_new_contr #+caption: Loop gain #+RESULTS: [[file:figs/loop_gain_diag_old_new_contr.png]] Compare Sensitivity functions #+begin_src matlab :exports none %% Sensitivity function figure; tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); hold on; plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(K(1,1), f, 'Hz'))), 'DisplayName', 'Old K'); plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(Kb(1,1), f, 'Hz'))), 'DisplayName', 'New K'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); ylim([1e-2, 1e1]); xlim([1, 1e3]); legend('location', 'southeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/sensitivity_comp.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:sensitivity_comp #+caption: Comparison of sensitivity functions #+RESULTS: [[file:figs/sensitivity_comp.png]] #+begin_src matlab L = zeros(3, 3, length(f)); Lb = zeros(3, 3, length(f)); for i_f = 1:length(f) L(:,:,i_f) = [G_ur(i_f,:); G_uh(i_f,:); G_d(i_f,:)]*freqresp(K , f(i_f), 'Hz'); Lb(:,:,i_f) = [G_ur(i_f,:); G_uh(i_f,:); G_d(i_f,:)]*freqresp(Kb, f(i_f), 'Hz'); end #+end_src #+begin_src matlab :exports none %% Compute the Eigenvalues of the loop gain Ldet = zeros(3, length(f)); Ldetb = zeros(3, length(f)); % Loop gain for i_f = 1:length(f) Ldet( :, i_f) = eig(squeeze(L( :,:,i_f))); Ldetb(:, i_f) = eig(squeeze(Lb(:,:,i_f))); end #+end_src #+begin_src matlab :exports none %% Plot of the eigenvalues of L in the complex plane figure; hold on; for i = 1:size(Ldet,1) plot(real(Ldet(i,:)), imag(Ldet(i,:)), '.', 'color', colors(1, :)); plot(real(Ldet(i,:)), -imag(Ldet(i,:)), '.', 'color', colors(1, :)); plot(real(Ldetb(i,:)), imag(Ldetb(i,:)), '.', 'color', colors(2, :)); plot(real(Ldetb(i,:)), -imag(Ldetb(i,:)), '.', 'color', colors(2, :)); end plot(-1, 0, 'kx', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real'); ylabel('Imag'); xlim([-3, 1]); ylim([-2, 2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loci_loop_gain_comp_controllers.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+caption: Root Locus #+RESULTS: [[file:figs/loci_loop_gain_comp_controllers.png]] ** Test #+begin_src matlab %% Notch gm = 0.015; xi = 0.1; wn = 2*pi*208; K_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2); #+end_src #+begin_src matlab %% Double integrator w0 = 2*pi*40; K_int = (w0^2)/(s^2); #+end_src #+begin_src matlab %% Lead a = 3; % Amount of phase lead / width of the phase lead / high frequency gain K_lead = 1/(sqrt(a))*(1 + s/(w0/sqrt(a)))/(1 + s/(w0*sqrt(a))); K_lead = K_lead*K_lead; #+end_src #+begin_src matlab %% Low Pass Filter w0 = 2*pi*120; % Cut-off frequency [rad/s] xi = 0.3; % Damping Ratio K_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2); #+end_src #+begin_src matlab %% Diagonal controller Kb = 0.8*eye(3)*K_notch*K_int*K_lead*K_lpf; #+end_src ** New controller - Higher bandwidth #+begin_src matlab %% Previously used controller load('X_tal_cage_PID.mat', 'K'); #+end_src #+begin_src matlab %% Current Controller design % Lead a = 8; % Amount of phase lead / width of the phase lead / high frequency gain wc = 2*pi*20; % Frequency with the maximum phase lead [rad/s] % Low Pass Filter w0 = 2*pi*80; % Cut-off frequency [rad/s] xi = 0.4; % Damping Ratio Kb_old = eye(3)*(2*pi*20)^2/(s^2) *1/(sqrt(a))* (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))) * 1/(1 + 2*xi/w0*s + s^2/w0^2);; #+end_src #+begin_src matlab %% Notch gm = 0.015; xi = 0.2; wn = 2*pi*208; K_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2); #+end_src #+begin_src matlab %% Double integrator w0 = 2*pi*40; K_int = (w0^2)/(s^2); #+end_src #+begin_src matlab %% Lead a = 3; % Amount of phase lead / width of the phase lead / high frequency gain w0 = 2*pi*40; K_lead = 1/(sqrt(a))*(1 + s/(w0/sqrt(a)))/(1 + s/(w0*sqrt(a))); K_lead = K_lead*K_lead; #+end_src #+begin_src matlab %% Low Pass Filter w0 = 2*pi*120; % Cut-off frequency [rad/s] xi = 0.3; % Damping Ratio K_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2); #+end_src #+begin_src matlab %% Diagonal controller Kb = 0.9*eye(3)*K_notch*K_int*K_lead*K_lpf; #+end_src #+begin_src matlab :exports none %% Loop Gain figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_ur(:,1).*squeeze(freqresp(K(1,1), f, 'Hz'))), 'DisplayName', 'PID'); plot(f, abs(G_ur(:,1).*squeeze(freqresp(Kb_old(1,1), f, 'Hz'))), 'DisplayName', 'Double Integrator + Lead'); plot(f, abs(G_ur(:,1).*squeeze(freqresp(Kb(1,1), f, 'Hz'))), 'DisplayName', 'Double Integrator + Lead + Notch'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-3, 1e3]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_ur(:,1).*squeeze(freqresp(K(1,1), f, 'Hz')))); plot(f, 180/pi*angle(G_ur(:,1).*squeeze(freqresp(Kb_old(1,1), f, 'Hz')))); plot(f, 180/pi*angle(G_ur(:,1).*squeeze(freqresp(Kb(1,1), f, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loop_gain_compare.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:loop_gain_compare #+caption: description #+RESULTS: [[file:figs/loop_gain_compare.png]] #+begin_src matlab L = zeros(3, 3, length(f)); Lb = zeros(3, 3, length(f)); Lb_new = zeros(3, 3, length(f)); for i_f = 1:length(f) L(:,:,i_f) = [G_ur(i_f,:); G_uh(i_f,:); G_d(i_f,:)]*freqresp(K , f(i_f), 'Hz'); Lb(:,:,i_f) = [G_ur(i_f,:); G_uh(i_f,:); G_d(i_f,:)]*freqresp(Kb_old, f(i_f), 'Hz'); Lb_new(:,:,i_f) = [G_ur(i_f,:); G_uh(i_f,:); G_d(i_f,:)]*freqresp(Kb, f(i_f), 'Hz'); end #+end_src #+begin_src matlab :exports none %% Compute the Eigenvalues of the loop gain Ldet = zeros(3, length(f)); Ldetb = zeros(3, length(f)); Ldetb_new = zeros(3, length(f)); % Loop gain for i_f = 1:length(f) Ldet( :, i_f) = eig(squeeze(L( :,:,i_f))); Ldetb(:, i_f) = eig(squeeze(Lb(:,:,i_f))); Ldetb_new(:, i_f) = eig(squeeze(Lb_new(:,:,i_f))); end #+end_src #+begin_src matlab :exports none %% Plot of the eigenvalues of L in the complex plane figure; hold on; plot(real(Ldet(1,:)), imag(Ldet(1,:)), '.', 'color', colors(1, :), 'DisplayName', 'PID'); plot(real(Ldet(1,:)), -imag(Ldet(1,:)), '.', 'color', colors(1, :), 'HandleVisibility', 'off'); plot(real(Ldetb(1,:)), imag(Ldetb(1,:)), '.', 'color', colors(2, :), 'DisplayName', 'Double Integrator + Lead'); plot(real(Ldetb(1,:)), -imag(Ldetb(1,:)), '.', 'color', colors(2, :), 'HandleVisibility', 'off'); plot(real(Ldetb_new(1,:)), imag(Ldetb_new(1,:)), '.', 'color', colors(3, :), 'DisplayName', 'Double Integrator + Lead + Notch'); plot(real(Ldetb_new(1,:)), -imag(Ldetb_new(1,:)), '.', 'color', colors(3, :), 'HandleVisibility', 'off'); for i = 2:size(Ldet,1) plot(real(Ldet(i,:)), imag(Ldet(i,:)), '.', 'color', colors(1, :), 'HandleVisibility', 'off'); plot(real(Ldet(i,:)), -imag(Ldet(i,:)), '.', 'color', colors(1, :), 'HandleVisibility', 'off'); plot(real(Ldetb(i,:)), imag(Ldetb(i,:)), '.', 'color', colors(2, :), 'HandleVisibility', 'off'); plot(real(Ldetb(i,:)), -imag(Ldetb(i,:)), '.', 'color', colors(2, :), 'HandleVisibility', 'off'); plot(real(Ldetb_new(i,:)), imag(Ldetb_new(i,:)), '.', 'color', colors(3, :), 'HandleVisibility', 'off'); plot(real(Ldetb_new(i,:)), -imag(Ldetb_new(i,:)), '.', 'color', colors(3, :), 'HandleVisibility', 'off'); end plot(-1, 0, 'kx', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real'); ylabel('Imag'); xlim([-3, 1]); ylim([-2, 2]); axis square; legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/nyquist_compare.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:nyquist_compare #+caption: Nyquist Plot #+RESULTS: [[file:figs/nyquist_compare.png]] #+begin_src matlab :exports none %% Sensitivity function figure; tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); hold on; plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(K(1,1), f, 'Hz'))), 'DisplayName', 'PID'); plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(Kb_old(1,1), f, 'Hz'))), 'DisplayName', '$K_{10Hz}$'); plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(Kb(1,1), f, 'Hz'))), 'DisplayName', '$K_{20Hz}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Sensitivity Magnitude'); ylim([1e-3, 5]); xlim([1, 5e2]); legend('location', 'southeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/sensitivity_function_compare.pdf', 'width', 'normal', 'height', 'tall'); #+end_src #+name: fig:sensitivity_function_compare #+caption: description #+RESULTS: [[file:figs/sensitivity_function_compare.png]] ** Added gain #+begin_src matlab %% Notch gm = 0.015; xi = 0.2; wn = 2*pi*208; K_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2); #+end_src #+begin_src matlab %% Double integrator w0 = 2*pi*40; K_int = (w0^2)/(s^2); #+end_src #+begin_src matlab %% Lead a = 3; % Amount of phase lead / width of the phase lead / high frequency gain w0 = 2*pi*40; K_lead = 1/(sqrt(a))*(1 + s/(w0/sqrt(a)))/(1 + s/(w0*sqrt(a))); K_lead = K_lead*K_lead; #+end_src #+begin_src matlab %% Low Pass Filter w0 = 2*pi*120; % Cut-off frequency [rad/s] xi = 0.3; % Damping Ratio K_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2); #+end_src #+begin_src matlab gm = 10; xi = 0.02; wn = 2*pi*15; H = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2); #+end_src #+begin_src matlab %% Diagonal controller Kb_gain = 0.9*eye(3)*H*K_notch*K_int*K_lead*K_lpf; #+end_src #+begin_src matlab Lb_gain = zeros(3, 3, length(f)); for i_f = 1:length(f) Lb_gain(:,:,i_f) = [G_ur(i_f,:); G_uh(i_f,:); G_d(i_f,:)]*freqresp(Kb_gain, f(i_f), 'Hz'); end #+end_src #+begin_src matlab :exports none %% Compute the Eigenvalues of the loop gain Ldetb_gain = zeros(3, length(f)); % Loop gain for i_f = 1:length(f) Ldetb_gain(:, i_f) = eig(squeeze(Lb_gain(:,:,i_f))); end #+end_src #+begin_src matlab :exports none %% Loop Gain figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_ur(:,1).*squeeze(freqresp(Kb(1,1), f, 'Hz'))), 'color', colors(3, :)); plot(f, abs(G_ur(:,1).*squeeze(freqresp(Kb_gain(1,1), f, 'Hz'))), 'color', colors(4, :)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e2]); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_ur(:,1).*squeeze(freqresp(Kb(1,1), f, 'Hz'))), 'color', colors(3, :)); plot(f, 180/pi*angle(G_ur(:,1).*squeeze(freqresp(Kb_gain(1,1), f, 'Hz'))), 'color', colors(4, :)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loop_gain_compare_added_gain.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:loop_gain_compare_added_gain #+caption: description #+RESULTS: [[file:figs/loop_gain_compare_added_gain.png]] #+begin_src matlab :exports none %% Sensitivity function figure; tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); hold on; plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(K(1,1), f, 'Hz'))), 'DisplayName', 'Old K'); plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(Kb_old(1,1), f, 'Hz'))), 'DisplayName', 'Act K'); plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(Kb(1,1), f, 'Hz'))), 'DisplayName', 'New K'); plot(f, 1./abs(1 + G_d(:,3).*squeeze(freqresp(Kb_gain(1,1), f, 'Hz'))), 'DisplayName', 'New K'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); ylim([1e-2, 1e1]); xlim([1, 1e3]); legend('location', 'southeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/sensitivity_new_gain_compare.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:sensitivity_new_gain_compare #+caption: description #+RESULTS: [[file:figs/sensitivity_new_gain_compare.png]] #+begin_src matlab :exports none %% Plot of the eigenvalues of L in the complex plane figure; hold on; for i = 1:size(Ldet,1) plot(real(Ldetb_new(i,:)), imag(Ldetb_new(i,:)), '.', 'color', colors(3, :)); plot(real(Ldetb_new(i,:)), -imag(Ldetb_new(i,:)), '.', 'color', colors(3, :)); plot(real(Ldetb_gain(i,:)), imag(Ldetb_gain(i,:)), '.', 'color', colors(4, :)); plot(real(Ldetb_gain(i,:)), -imag(Ldetb_gain(i,:)), '.', 'color', colors(4, :)); end plot(-1, 0, 'kx', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real'); ylabel('Imag'); xlim([-3, 1]); ylim([-2, 2]); axis square; #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/nyquist_after_gain_frequency.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:nyquist_after_gain_frequency #+caption: nyquist plot #+RESULTS: [[file:figs/nyquist_after_gain_frequency.png]] * Noise Budgeting ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** No Displacement | 1 | dz311 | | 2 | dry311 | | 3 | drx311 | | 4 | dz111 | | 5 | dry111 | | 6 | drx111 | | 7 | fjpur | | 8 | fjpuh | | 9 | fjpd | | 10 | bragg | #+begin_src matlab data_10_deg = load('no_mov_10.mat'); data_70_deg = load('no_mov_70.mat'); #+end_src #+begin_src matlab data_10_deg = extractDatData('no_mov_10.mat', ... {"dz311", "dry311", "drx311", "dz", "dry", "drx", "fjpur", "fjpuh", "fjpd", "bragg"}, ... [1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-8, 1e-8, 1e-8, pi/180]); data_10_deg = processMeasData(data_10_deg); #+end_src #+begin_src matlab Ts = 1e-4; t = Ts*[1:length(data_10_deg.bragg)]; #+end_src #+begin_src matlab data_10_deg.dz = data_10_deg.allValues(:,4) - mean(data_10_deg.allValues(:,4)); data_10_deg.dry = data_10_deg.allValues(:,5) - mean(data_10_deg.allValues(:,5)); data_10_deg.drx = data_10_deg.allValues(:,6) - mean(data_10_deg.allValues(:,6)); #+end_src #+begin_src matlab %% Compute motion error in the frame of the fast jack J_a_111 = [1, 0.14, -0.1525 1, 0.14, 0.0675 1, -0.14, 0.0425]; de_111 = [data_10_deg.dz'; data_10_deg.dry'; data_10_deg.drx']; de_fj = J_a_111*de_111; data_10_deg.fj_ur = de_fj(1,:)'; data_10_deg.fj_uh = de_fj(2,:)'; data_10_deg.fj_d = de_fj(3,:)'; de_111 = [data_70_deg.dz'; data_70_deg.dry'; data_70_deg.drx']; de_fj = J_a_111*de_111; data_70_deg.fj_ur = de_fj(1,:)'; data_70_deg.fj_uh = de_fj(2,:)'; data_70_deg.fj_d = de_fj(3,:)'; #+end_src #+begin_src matlab win = hanning(ceil(1/Ts)); [pxx_10_ur, f] = pwelch(data_10_deg.fj_ur, win, [], [], 1/Ts); [pxx_70_ur, ~] = pwelch(data_70_deg.fj_ur, win, [], [], 1/Ts); [pxx_10_uh, ~] = pwelch(data_10_deg.fj_uh, win, [], [], 1/Ts); [pxx_70_uh, ~] = pwelch(data_70_deg.fj_uh, win, [], [], 1/Ts); [pxx_10_d, ~] = pwelch(data_10_deg.fj_d, win, [], [], 1/Ts); [pxx_70_d, ~] = pwelch(data_70_deg.fj_d, win, [], [], 1/Ts); #+end_src #+begin_src matlab CPS_10_ur = flip(-cumtrapz(flip(f), flip(pxx_10_ur))); CPS_10_uh = flip(-cumtrapz(flip(f), flip(pxx_10_uh))); CPS_10_d = flip(-cumtrapz(flip(f), flip(pxx_10_d))); CPS_70_ur = flip(-cumtrapz(flip(f), flip(pxx_70_ur))); CPS_70_uh = flip(-cumtrapz(flip(f), flip(pxx_70_uh))); CPS_70_d = flip(-cumtrapz(flip(f), flip(pxx_70_d))); #+end_src #+begin_src matlab figure; hold on; plot(f, sqrt(CPS_10_ur), '-' , 'color', colors(1, :), 'DisplayName', '10 deg - $u_r$') plot(f, sqrt(CPS_70_ur), '--', 'color', colors(1, :), 'DisplayName', '70 deg - $u_r$') plot(f, sqrt(CPS_10_uh), '-' , 'color', colors(2, :), 'DisplayName', '10 deg - $u_h$') plot(f, sqrt(CPS_70_uh), '--', 'color', colors(2, :), 'DisplayName', '70 deg - $u_h$') plot(f, sqrt(CPS_10_d), '-' , 'color', colors(3, :), 'DisplayName', '10 deg - $d$') plot(f, sqrt(CPS_70_d), '--', 'color', colors(3, :), 'DisplayName', '70 deg - $d$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$\frac{nrad}{\sqrt{Hz}}$]'); legend('location', 'northwest'); xlim([1, 1e3]); #+end_src #+begin_src matlab figure; hold on; plot(f, sqrt(pxx_10_ur)) plot(f, sqrt(pxx_70_ur)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$\frac{nrad}{\sqrt{Hz}}$]'); legend('location', 'northwest'); xlim([1, 1e3]); #+end_src #+begin_src matlab data_70_deg.dz = data_70_deg.allValues(:,4) - mean(data_70_deg.allValues(:,4)); data_70_deg.dry = data_70_deg.allValues(:,5) - mean(data_70_deg.allValues(:,5)); data_70_deg.drx = data_70_deg.allValues(:,6) - mean(data_70_deg.allValues(:,6)); #+end_src #+begin_src matlab win = hanning(ceil(1/Ts)); [pxx_10_drx, f] = pwelch(data_10_deg.drx, win, [], [], 1/Ts); [pxx_70_drx, ~] = pwelch(data_70_deg.drx, win, [], [], 1/Ts); [pxx_10_dry, ~] = pwelch(data_10_deg.dry, win, [], [], 1/Ts); [pxx_70_dry, ~] = pwelch(data_70_deg.dry, win, [], [], 1/Ts); [pxx_10_dz, ~] = pwelch(data_10_deg.dz, win, [], [], 1/Ts); [pxx_70_dz, ~] = pwelch(data_70_deg.dz, win, [], [], 1/Ts); #+end_src #+begin_src matlab figure; hold on; plot(f, sqrt(pxx_10_drx)) plot(f, sqrt(pxx_70_drx)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$\frac{nrad}{\sqrt{Hz}}$]'); legend('location', 'northwest'); xlim([1, 1e3]); #+end_src #+begin_src matlab figure; hold on; plot(f, sqrt(pxx_10_dry)) plot(f, sqrt(pxx_70_dry)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$\frac{nrad}{\sqrt{Hz}}$]'); legend('location', 'northwest'); xlim([1, 1e3]); #+end_src #+begin_src matlab figure; hold on; plot(f, sqrt(pxx_10_dz)) plot(f, sqrt(pxx_70_dz)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$\frac{nm}{\sqrt{Hz}}$]'); legend('location', 'northwest'); xlim([1, 1e3]); #+end_src ** Scans | 1 | dz311 | | 2 | dry311 | | 3 | drx311 | | 4 | dz111 | | 5 | dry111 | | 6 | drx111 | | 7 | fjpur | | 8 | fjpuh | | 9 | fjpd | | 10 | bragg | #+begin_src matlab %% Load Data data_10_70_deg = extractDatData('thtraj_10_70.mat', ... {"dz311", "dry311", "drx311", "dz", "dry", "drx", "fjur", "fjuh", "fjd", "bragg"}, ... [1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-8, 1e-8, 1e-8, pi/180]); Ts = 1e-4; t = Ts*[1:length(data_10_70_deg.bragg)]; %% Actuator Jacobian J_a_111 = [1, 0.14, -0.0675 1, 0.14, 0.1525 1, -0.14, 0.0425]; data_10_70_deg.ddz = 10.5e-3./(2*cos(data_10_70_deg.bragg)) - data_10_70_deg.dz; %% Computation of the position of the FJ as measured by the interferometers error = J_a_111 * [data_10_70_deg.ddz, data_10_70_deg.dry, data_10_70_deg.drx]'; data_10_70_deg.fjur_e = error(1,:)'; % [m] data_10_70_deg.fjuh_e = error(2,:)'; % [m] data_10_70_deg.fjd_e = error(3,:)'; % [m] #+end_src #+begin_src matlab %% Load Data data_70_10_deg = extractDatData('thtraj_70_10.mat', ... {"dz311", "dry311", "drx311", "dz", "dry", "drx", "fjur", "fjuh", "fjd", "bragg"}, ... [1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-8, 1e-8, 1e-8, pi/180]); %% Actuator Jacobian J_a_111 = [1, 0.14, -0.0675 1, 0.14, 0.1525 1, -0.14, 0.0425]; data_70_10_deg.ddz = 10.5e-3./(2*cos(data_70_10_deg.bragg)) - data_70_10_deg.dz; %% Computation of the position of the FJ as measured by the interferometers error = J_a_111 * [data_70_10_deg.ddz, data_70_10_deg.dry, data_70_10_deg.drx]'; data_70_10_deg.fjur_e = error(1,:)'; % [m] data_70_10_deg.fjuh_e = error(2,:)'; % [m] data_70_10_deg.fjd_e = error(3,:)'; % [m] #+end_src #+begin_src matlab win = hanning(ceil(1/Ts)); [pxx_10_70_ur, f] = pwelch(data_10_70_deg.fjur_e(t<100), win, [], [], 1/Ts); [pxx_70_10_ur, ~] = pwelch(data_70_10_deg.fjur_e(t<100), win, [], [], 1/Ts); [pxx_10_70_uh, ~] = pwelch(data_10_70_deg.fjuh_e(t<100), win, [], [], 1/Ts); [pxx_70_10_uh, ~] = pwelch(data_70_10_deg.fjuh_e(t<100), win, [], [], 1/Ts); [pxx_10_70_d, ~] = pwelch(data_10_70_deg.fjd_e(t<100), win, [], [], 1/Ts); [pxx_70_10_d, ~] = pwelch(data_70_10_deg.fjd_e(t<100), win, [], [], 1/Ts); #+end_src #+begin_src matlab CPS_10_70_ur = flip(-cumtrapz(flip(f), flip(pxx_10_70_ur))); CPS_10_70_uh = flip(-cumtrapz(flip(f), flip(pxx_10_70_uh))); CPS_10_70_d = flip(-cumtrapz(flip(f), flip(pxx_10_70_d))); CPS_70_10_ur = flip(-cumtrapz(flip(f), flip(pxx_70_10_ur))); CPS_70_10_uh = flip(-cumtrapz(flip(f), flip(pxx_70_10_uh))); CPS_70_10_d = flip(-cumtrapz(flip(f), flip(pxx_70_10_d))); #+end_src #+begin_src matlab :exports none %% Spectrogram figure; hold on; pspectrum(data_10_70_deg.fjuh_e(t<100), 1e4, 'spectrogram', ... 'FrequencyResolution', 1e0, ... 'OverlapPercent', 99, ... 'FrequencyLimits', [1, 400]); hold off; % xlim([0.03, 1.14]); ylim([1, 400]); % caxis([-160, -130]) title(''); #+end_src #+begin_src matlab figure; hold on; plot(f, 1e9*sqrt(CPS_10_70_ur)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$\frac{nrad}{\sqrt{Hz}}$]'); legend('location', 'northwest'); xlim([1, 1e3]); #+end_src #+begin_src matlab figure; hold on; plot(f, sqrt(pxx_10_70_ur)) plot(f, sqrt(pxx_70_10_ur)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$\frac{nrad}{\sqrt{Hz}}$]'); legend('location', 'northwest'); xlim([1, 1e3]); #+end_src ** Noise budgeting - No rotation First, we look at the position errors when the bragg axis is not moving #+begin_src matlab %% Load Measurement Data ol_data = load('FJPUR_step.mat'); #+end_src #+begin_src matlab %% Pre-processing ol_time = ol_data.time - ol_data.time(1); ol_drx = ol_data.allValues(ol_time < 45, 6); ol_dry = ol_data.allValues(ol_time < 45, 5); ol_dz = ol_data.allValues(ol_time < 45, 4); ol_drx = ol_drx - mean(ol_drx); ol_dry = ol_dry - mean(ol_dry); ol_dz = ol_dz - mean(ol_dz); ol_time = ol_time(ol_time < 45); #+end_src #+begin_src matlab figure; plot(ol_time, ol_drx) #+end_src #+begin_src matlab %% Parameters for Spectral Analysis Ts = 1e-4; win = hanning(ceil(1/Ts)); #+end_src #+begin_src matlab %% Computation of the PSD [pxx_ol_drx, f] = pwelch(ol_drx, win, [], [], 1/Ts); [pxx_ol_dry, ~] = pwelch(ol_dry, win, [], [], 1/Ts); [pxx_ol_dz, ~] = pwelch(ol_dz, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none %% Amplitude Spectral Density figure; hold on; plot(f, sqrt(pxx_ol_drx), 'DisplayName', '$R_x$'); plot(f, sqrt(pxx_ol_dry), 'DisplayName', '$R_y$'); plot(f, sqrt(pxx_ol_dz), 'DisplayName', '$D_z$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$\frac{nm,nrad}{\sqrt{Hz}}$]'); legend('location', 'northwest'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/noise_budget_no_mov_asd.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:noise_budget_no_mov_asd #+caption: Amplitude Spectral Density #+RESULTS: [[file:figs/noise_budget_no_mov_asd.png]] #+begin_src matlab %% Cumulative Spectral Density CPS_drx = flip(-cumtrapz(flip(f), flip(pxx_ol_drx))); CPS_dry = flip(-cumtrapz(flip(f), flip(pxx_ol_dry))); CPS_dz = flip(-cumtrapz(flip(f), flip(pxx_ol_dz))); #+end_src #+begin_src matlab %% Cumulative Spectral Density CPS_drx = cumtrapz(f, pxx_ol_drx); CPS_dry = cumtrapz(f, pxx_ol_dry); CPS_dz = cumtrapz(f, pxx_ol_dz); #+end_src #+begin_src matlab :exports none %% Cumulative Spectral Density figure; hold on; plot(f, sqrt(CPS_drx), 'DisplayName', '$R_x$'); plot(f, sqrt(CPS_dry), 'DisplayName', '$R_y$'); plot(f, sqrt(CPS_dz), 'DisplayName', '$D_z$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('CAS [nm, nrad rms]'); legend('location', 'northwest'); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/noise_budget_no_mov_cas.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:noise_budget_no_mov_cas #+caption: Cumulative Amplitude Spectrum #+RESULTS: [[file:figs/noise_budget_no_mov_cas.png]] ** TODO Noise budgeting - Bragg rotation * Test Mode C ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** Mode B and Mode C #+begin_src matlab data_B = extractDatData(sprintf("/home/thomas/mnt/data_id21/22Jan/blc13491/id21/test_regul_220119/%s","lut_const_fj_vel_19012022_1450.dat"), ... {"bragg", "dz", "dry", "drx", "fjur", "fjuh", "fjd"}, ... [pi/180, 1e-9, 1e-9, 1e-9, 1e-8, 1e-8, 1e-8]); data_B = processMeasData(data_B); #+end_src #+begin_src matlab data_C = extractDatData(sprintf("/home/thomas/mnt/data_id21/22Jan/blc13491/id21/test_regul_220119/%s","lut_const_fj_vel_19012022_1454.dat"), ... {"bragg", "dz", "dry", "drx", "fjur", "fjuh", "fjd"}, ... [pi/180, 1e-9, 1e-9, 1e-9, 1e-8, 1e-8, 1e-8]); data_C = processMeasData(data_C); #+end_src #+begin_src matlab figure; hold on; plot(180/pi*data_B.bragg, 1e9*data_B.drx) hold off; xlabel('Bragg Angle [deg]'); ylabel('DRX [nrad]'); #+end_src #+begin_src matlab figure; hold on; plot(180/pi*data_B.bragg, 1e9*data_B.fjur_e_filt) plot(180/pi*data_C.bragg, 1e9*data_C.fjur_e_filt) hold off; xlabel('Bragg Angle [deg]'); ylabel('FJUR Error [nm]'); #+end_src #+begin_src matlab figure; hold on; plot(180/pi*data_B.bragg, 1e9*data_B.fjur_e) plot(180/pi*data_C.bragg, 1e9*data_C.fjur_e) hold off; xlabel('Bragg Angle [deg]'); ylabel('FJUR Error [nm]'); #+end_src #+begin_src matlab %% FIR Filter Fs = 1e4; % Sampling Frequency [Hz] fir_order = 5000; % Filter's order delay = fir_order/2; % Delay induced by the filter B_fir = firls(5000, ... % Filter's order [0 5/(Fs/2) 10/(Fs/2) 1], ... % Frequencies [Hz] [1 1 0 0]); % Wanted Magnitudes #+end_src #+begin_src matlab %% Filtering all measured Fast Jack Position using the FIR filter data_B.drx_filter = filter(B_fir, 1, data_B.drx); data_B.drx_filter(1:end-delay) = data_B.drx_filter(delay+1:end); data_C.drx_filter = filter(B_fir, 1, data_C.drx); data_C.drx_filter(1:end-delay) = data_C.drx_filter(delay+1:end); #+end_src #+begin_src matlab figure; hold on; plot(180/pi*data_B.bragg, 1e9*data_B.drx_filter) plot(180/pi*data_C.bragg, 1e9*data_C.drx_filter) hold off; xlabel('Bragg Angle [deg]'); ylabel('DRX [nrad]'); #+end_src #+begin_src matlab Ts = 1e-4; win = hanning(ceil(1/Ts)); [pxx_B_drx, f] = pwelch(data_B.drx, win, [], [], 1/Ts); [pxx_C_drx, ~] = pwelch(data_C.drx, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none %% Estimation of Sensitivity function figure; hold on; plot(f, sqrt(pxx_B_drx), 'DisplayName', 'B'); plot(f, sqrt(pxx_C_drx), 'DisplayName', 'C'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD'); legend('location', 'northwest'); #+end_src #+begin_src matlab :exports none %% Estimation of Sensitivity function figure; plot(f, sqrt(pxx_C_drx)./sqrt(pxx_B_drx), 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Sensitivity Function'); legend('location', 'northwest'); #+end_src * Export numerator and denominator ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** Export #+begin_src matlab K_order = 10; #+end_src #+begin_src matlab load('X_tal_cage_PID.mat', 'K'); K_order = order(K(1,1)); Kz = c2d(K(1,1)*(1 + s/2/pi/2e3)^(9-K_order)/(1 + s/2/pi/2e3)^(9-K_order), 1e-4); [num, den] = tfdata(Kz, 'v'); formatSpec = '%.18e %.18e %.18e %.18e %.18e %.18e %.18e %.18e %.18e %.18e\n'; fileID = fopen('X_tal_cage_PID.dat', 'w'); fprintf(fileID, formatSpec, [num; den]'); fclose(fileID); #+end_src #+begin_src matlab load('X_tal_cage_PID_20Hz.mat', 'K'); K_order = order(K(1,1)); Kz = c2d(K(1,1)*(1 + s/2/pi/2e3)^(9-K_order)/(1 + s/2/pi/2e3)^(9-K_order), 1e-4); [num, den] = tfdata(Kz, 'v'); formatSpec = '%.18e %.18e %.18e %.18e %.18e %.18e %.18e %.18e %.18e %.18e\n'; fileID = fopen('X_tal_cage_PID_20Hz.dat', 'w'); fprintf(fileID, formatSpec, [num; den]'); fclose(fileID); #+end_src #+begin_src matlab load('X_tal_cage_PID_40Hz.mat', 'K'); K_order = order(K(1,1)); Kz = c2d(K(1,1)*(1 + s/2/pi/2e3)^(9-K_order)/(1 + s/2/pi/2e3)^(9-K_order), 1e-4); [num, den] = tfdata(Kz, 'v'); formatSpec = '%.18e %.18e %.18e %.18e %.18e %.18e %.18e %.18e %.18e %.18e\n'; fileID = fopen('X_tal_cage_PID_40Hz.dat', 'w'); fprintf(fileID, formatSpec, [num; den]'); fclose(fileID); #+end_src ** Verify #+begin_src matlab K_data = importdata('X_tal_cage_PID_20Hz.dat'); K = tf(K_data(1,:), K_data(2,:), 1e-4) #+end_src * Helping Functions :noexport: ** Initialize Path #+NAME: m-init-path #+BEGIN_SRC matlab %% Path for functions, data and scripts addpath('./matlab/mat/'); % Path for data addpath('./matlab/src/'); % Path for functions addpath('./matlab/'); % Path for scripts #+END_SRC #+NAME: m-init-path-tangle #+BEGIN_SRC matlab %% Path for functions, data and scripts addpath('./mat/'); % Path for data addpath('./src/'); % Path for functions #+END_SRC ** Initialize Simscape Model #+NAME: m-init-simscape #+begin_src matlab #+end_src ** Initialize other elements #+NAME: m-init-other #+BEGIN_SRC matlab %% Colors for the figures colors = colororder; %% Frequency Vector freqs = logspace(0, 3, 1000); #+END_SRC ** =extractDatData= :PROPERTIES: :header-args:matlab+: :tangle matlab/src/extractDatData.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: <> *** Function Description #+begin_src matlab function [data_struct] = extractDatData(dat_file, names, scale) % extractDatData - % % Syntax: extractDatData(data_file, lut_file, args) % % Inputs: % - data_file - Where to load the .mat file % - lut_file - Where to save the .dat file #+end_src *** Load Data #+begin_src matlab %% Load Data data_array = importdata(dat_file); #+end_src #+begin_src matlab %% Initialize Struct data_struct = struct(); #+end_src #+begin_src matlab %% Populate Struct for i = 1:length(names) data_struct.(names{i}) = scale(i)*data_array(:,i); end #+end_src #+begin_src matlab %% Add Time data_struct.time = 1e-4*[1:1:length(data_struct.(names{1}))]; #+end_src ** =processMeasData= :PROPERTIES: :header-args:matlab+: :tangle matlab/src/processMeasData.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: <> *** Function Description #+begin_src matlab function [data] = processMeasData(data, args) % processMeasData - % % Syntax: processMeasData(data_file, lut_file, args) % % Inputs: % - data #+end_src *** Optional Parameters #+begin_src matlab arguments data args.fir_order (1,1) double {mustBeNumericOrLogical} = 5000 end #+end_src *** Process Data #+begin_src matlab %% Actuator Jacobian J_a_111 = [1, 0.14, -0.0675 1, 0.14, 0.1525 1, -0.14, 0.0425]; #+end_src #+begin_src matlab %% FIR Filter Fs = 1e4; % Sampling Frequency [Hz] fir_order = args.fir_order; % Filter's order delay = fir_order/2; % Delay induced by the filter B_fir = firls(args.fir_order, ... % Filter's order [0 25/(Fs/2) 34/(Fs/2) 1], ... % Frequencies [Hz] [1 1 0 0]); % Wanted Magnitudes #+end_src #+begin_src matlab data.ddz = 10.5e-3./(2*cos(data.bragg)) - data.dz; %% Computation of the position of the FJ as measured by the interferometers error = J_a_111 * [data.ddz, data.dry, data.drx]'; data.fjur_e = error(1,:)'; % [m] data.fjuh_e = error(2,:)'; % [m] data.fjd_e = error(3,:)'; % [m] %% Filtering all measured Fast Jack Position using the FIR filter data.fjur_e_filt = filter(B_fir, 1, data.fjur_e); data.fjuh_e_filt = filter(B_fir, 1, data.fjuh_e); data.fjd_e_filt = filter(B_fir, 1, data.fjd_e); %% Compensation of the delay introduced by the FIR filter data.fjur_e_filt(1:end-delay) = data.fjur_e_filt(delay+1:end); data.fjuh_e_filt(1:end-delay) = data.fjuh_e_filt(delay+1:end); data.fjd_e_filt( 1:end-delay) = data.fjd_e_filt( delay+1:end); #+end_src #+begin_src matlab %% Re-sample data to have same data points in FJUR [data.fjur_e_resampl, data.fjur_resampl] = resample(data.fjur_e_filt, data.fjur, 1/100e-9); [data.fjuh_e_resampl, data.fjuh_resampl] = resample(data.fjuh_e_filt, data.fjuh, 1/100e-9); [data.fjd_e_resampl, data.fjd_resampl] = resample(data.fjd_e_filt, data.fjd, 1/100e-9); #+end_src * Bibliography :ignore: #+latex: \printbibliography